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I. INTRODUCTION
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We recognize the advantages of a two-bladed rotary wing configura-

tionp such as: hub simplicity_ absence of drag hinge dampers, rugged-

ness, et cetera. For the jet helicopter which utilizes the blades as

air ducts, there is the added advantage for a given section of passage,

a smaller plenum and, consequently, a higher ratio of take-off weight

to necessary ejector thrust. These advantages are opposed by the less

favorable vibrating behavior, because the 2nd harmonic of the blade

motion is not in equilibrium. One is_ therefore, led to anticipate an

isolation of the rotor by elastic suspension.

The object of this article is the study of the possibility of using

a dynamic absorber. The principle is known. To balance the system, one

adds another system which has the same natural frequency a_ that of th__

exciting force. We could then conceive of a FRAPLM type amtiv]brator

mounted on the pylon of _he helicopter and given a frequency

2_ = const. (_ = fre_lency of rotor).

One such absorber would have, in addition to the necessarily large

mass, the defect of only operating correctly at a well-defined fre-

quency. On the other hand, at some frequencies slightly below or above,

the amplitudes would be cumulative. Now, even for an engine-driven

helicopter the frequency of the rotor is not absolutely constant, which

is all the more reason for the jet helicopter where the possibilities

of variation of the rpm present an essential attraction to the system.

It is necessary, consequently_ to choose an absorber based on the

utilization of the centrifugal force as in the case of the Taylor

pendulum. But whereas the latter absorbs the torsional vibrations of

a crankshaft, the _resent antivibrator must cancel the rotating forces
at 2m in the horizontal plane and the oscillating forces in the verti-

cal plane at 2m.

s • . •

*Translation of "Un Etouffeur de vibrations pour helmcoptere

bipale. Technique et Science Aeronautlques, No. 4, Aug. 1959,

pp. 231-235.

**Engineer for Sud-Aviation.



2. VERTICAL OSCILLATIONS

Recall first the principle of an absorber using as the elastic

force, the centrifugal force. Figure i shows the schematic of one such
absorber of vertical vibrations. The blades _re in a normal position

to the design plane and are attached to the hub by flapping hinges.

The motion of the hub is not directly related to the cyclic pitch changes

of the blades; thus, these changes and the general pitch of the blade

are effected in the classic manner by a spider control which is not

illustrated in figure i. The hub has two arms which form a rigid assem-

bly. Each of the arms supports a hinged mass at its extremity.

The arms form two flapping pendulums in the field of the centrif-

ugal force. The higher the rpm, the greater the force which restores

the pendulum to its equilibrium position; the more the pendulum stiffens,

the more the natural frequency increases. One sees immediately

(eqs. of fig. i) that the length of the pendulums must be one-fourth

the distance of the masses to the center of the rotor in order that its

own natural frequency will alway_ be equal tc twice that of the rotor

rpm. Let us note, however, that some measur6s of acceleration in flight

have shown that the vertical component of vibration is generally low, so

that some machines, such as the Djinn, may net even include an isolator.

The _Dplication of this apparatus does rot seem to pose a problem,

nelthe_ • _ descending vertical flight nor in translational flight where

the disturbing forces seem to be weak.

On the other hand, in the case of the f_ee hub, its stabilization

necessitates, in any case, an increase of inertia in the indicated

direction, so that the realization of such ar absorber - for the case

where it proves itself applicable - would corsist of a simple addition

of two hinges on the horizontal axis.
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3. HORIZONTAL OSCILLATIONS

Since the aerodynamic conditions for the advancing blade are dif-

ferent than for the retreating blade, there Js introdhced in the elastic

system, formed by the blades and the hub witl. its suspension to the

fuselage, an exciting force of which the horfzontal component is most

troublesome at a frequency of _J>.

As we propose to balance - by an absorb_r mounted on the rotating

system - the rotor, where the reaction is in the horizontal plane, the

natural frequency must necessarily be _. The phenomena are complicated
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by the elastic deformation of the blade and elastic suspension of the

hub. Furthermore, take-off poses the problem of stability known as

ground resonance.

We will first roughly describe the function of such an absorber_

then we will summarize in a few tables the complete calculation.

Figure 2 shows the schematic of such an absorber applied to a

Djinn-type rotor. The two blades are attached together by packs of

leaf springs, and as in the preceding explanation, receive their cyclic

change independently of the hub. Two arms are rigidly attached to the

hub and support two pendulums that can flap in the plane of the hub.

In order to explain schematically the operation of the blades, let

us recall first that owing to their elasticity, they are allowed to

bend in the horizontal plane, even if unhinged. In the present example,

the bending takes place due to their elasticity and that of the packs

of leaf springs. Let us look at the blade motion in two characteristic

positions, as shown in figure 3. In figure 3(a), the blades are at

their maximum amplitude _ little after the maximum excitation by the

aerodynamic forces. The centrifugal forces of the blades then give a

resultant in the plane of symmetry.

Figure 3(b) shows the blades 90° later. In order to come from the

advancing position to the retreating position, the blades must describe

an angle greater than 180 ° and will have, consequently, a speed greater

than that of the average rotor speed.

It follows that the centrifugal forces will be greater than for

that of the other blade, which will have a speed lower than the mean

rpm. The resultant has then changed sig_o in comparison to that found
for the position which preceded it by 90 • Thus we have a motion having

a frequency twice that of the rotor rpm.

The figures 3(a) and 3(b) show the starting positions of the two

pendulums of the dynamic absorber. Like the blades, the advancing

pendulum in forward flight must traverse a greater angle than the

retreating pendulum and have, consequently, a greater angular velocity

and centrifugal force. This difference of centrifugal forces serves to

balance the resultant of the centrifugal forces of the two blades; in

an analogous manner, when the blades are alined but have a different

speed (fig. 3(b)), it is the resultant of the two centrifugal forces

of the absorber inclined in relation to each other which will establish

equilibrium.



4. CALCULATIONOFTHEHORIZOITfALABSORBER

After this simplified account of the operation, we give a resume
of the calculation.

4. i. Method and Hypotheses

The hypotheses are those which have been made by Feingold and

Coleman in their study "Theory of Mechanical Oscillations of Rotors

With Two Hinged Blades" (ref. i).

The amplitudes are assumed small. The elastic deformation of the

blades is replaced by the motion of a rigid articulated blade provided

with a restoring spring. The aerodynamic dam_ing is neglected. One

takes into account the effect of the mass of The fuselage, of the elas-

ticity and damping of the elastic suspension ¢f the hub or of the landing

gear during descending vertical flight, in giving to the hub its cor-

responding characteristics.

The mass of the stabilizer is assumed to be concentrated at the

center of gravity of the small masses of the _endulums. We will utilize

the Lagrange equations.

Figure 4 gives the geometrical symbols which have been used.

The following section 4.2. defines the symbols which have been used.

Xl' YI' x2' Y2

Xl' YI' x2' Y2

_i,_2

4.2. Symbols

coordinates of C. G. of the bl_des in the fixed system

coordinates of the small masses of the stabilizer in

the fixed system

horizontal flapping of blades

_i' _2

x,y

horizontal flapping of the stabilizer masses

hub coordinates in the rotating system

angular velocity of rotor

t time



a

a

b

mb

me

m

K_

K

B

distance of hinge to center of rotation

distance of stabilizer arm hinges to the center of rotation

distance of blade C. G. to hinge

distance of stabilizer mass C. G. to hinge

mass of blade

mass of stabilizer tip masses

effective mass of hub

coefficient of elasticity of blade about hinge

coefficient of elasticity of the suspension and of the landing

gear concentrated in the hub

coefficient of damping of the suspension and of the landing

gear concentrated in the hub

M = 2rob + 2me + m

80 = b(_l + _2)-"

= b - _2)el _(_i ,

eO = _#1 + _2)'

vf =_

v b

B

M

r

Sa

a a%
= _' _e = M

2mb
_= _b = -_-

r2
l+--=p

b2

natural frequency of the effective hub

natural frequency of the hub

radius of gyration of the blade about its C. G.

distance from the center of the blade to the hinge



Sa

A1

T

V

F

Drot

_x

Deq

distance from the center of the stabilizer to its hinge

aircraft weight

kinetic energy

potential energy

dissipated energy

aerodynamic drag of rotor

aerodynamic drag of hub

aerodynamic drag of stabilizer

4.5. Energies of the System

The energies are first expressed in the fixed system xf, yf. Then

we transform these expressions into a rotating system at a speed e with

the rotor (compare to the Feingold report (ref. i)).

4._.i. Kinetic energy.- To the energy _.erms, in the manner Feingold

has established_ then, are added the terms o2' the kinetic energy of the

masses of the stabilizer expressed in the fixed system.

If we do not drop the terms which will occur in the Lagrange equa-

tions, the expression of kinetic energy of the system, expressed in the

variables of the rotating system, is given b_r the following expressions:

2M_[_ ] I(@ _12)(r_)
T = 2+ _2+ _2(x2+ _)_ _(_y_ _) + % 02+ 1 +

+ 2_1 + 2_1 - _l + 2_%1 _ _a_2(eO2 + 0121

+ me + 81 _ 2x81 + 2-yu_ 1 _ 2_ 1 _ 2_0_ 1 _ a _2 +
b

or

: :



7

L

i

7

5

and

M = 2rob + 2me + m

4. _.2. Potential energy.- The potential energy due to the elastic

deformations of the blades and of the undercarriage is:

V;g

4" }" }" Dissipation of energy.- The dissipation of energy due to

the whole undercarriage suspension is:

2

4.4. Exciting Forces

In forward flight, the advancing blade encounters aerodynamic con-

ditions which differ from those on the retreating blade. An excitation

of 2m is introduced in a fixed system and _ for a rotating system.

If we neglect the harmonics and choose the axis fP of the fixed ref-

erence in the position of the component of the resultant average aero-

dynamic rotating drag Dro t on the rotor plane, we obtain the forces

given by the following expressions:

Blades:

S a

b Dro t sin _t for el = b(_ 1 - 132)

Absorber:

Sa

-Deq _- cos _ot

Hub:

For x: Dma x cos _t

For y: -Dma x sin _t

b
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Remembering that for 80 = _(_i + _2)' which represents the motion

in phase of the two blades, the motion is not susceptible to coupling

with the pylon and thus the corresponding exziting forces do not enter

into the problem.

4.5. Lagrange Equations

Writing the Lagrange equations

d _\ _qr 8V 8F

qr _ _r

with the energies T, V_ F, and the exciting forces D of the pre-

ceding paragraphs, we arrive at a system of equations of motion:

,°

_max cos _0t = M(_-c0y) - 2mb_ I - 2me@ I - M(_n2x + coy)- 2mb_ I + 2meo_2@l

+ Kx + _x - _<oy - Dma x sin _t

- 2_me@ I + Ky + B_ + P_x

Sa '.r"""
°.

a _00 = 2me S"_ + 2_-_eo

b AI sin _t = 2mb + eI + _ +

a KI3

- mb -2.x_ + 2y_ 2 + 2 _-¢02e + 2 y e 1



__Sacos _t = 2me(-X + 9_+ el) + 2me(9_ + _¢_2 + a _o2@1)-Deq b b

The third and fourth of these equations contain only one variable each;

that is to say, 60 and _0' and so may be studied outside of the system.

The third equation corresponds to a damped motion of the blades. The

fourth equation corresponds to a theoretical undamped motion of the

stabilizer. But_ as there is always some frictior_ for practical pur-

poses it is a matter of a damped motion. The essential thing is that

the two motions are not coupled with that of the hub and do not repre-

sent a danger of instability. It is where the motion of the two opposite

arms are in phase that one encounters the greatest danger of instability.

4.6. Solution of the System of Equations

Seeing the complexity of the system of equations, the algebraic

solution is not of interest but it is desirable to seek the numerical

solution directly by finding:

(1) The proper values for the whole range of rpm (T. O. included)

(2) The response in the permanent operating regime

These calculations, which amount to the inversion of a matrix_ will be

preferably executed by electronic calculating machines.

5. RESULTS

Let us say at once that the results presented are purely theoretical,

as no practical application of this absorber has been effective to date.

The equations were applied to a single machine 3 namely, the DJinn.

5.1. Proper Values

As was to be expected, the introduction of a system in which the

natural frequency is equal to the operating rpm, introduces an insta-

bility as in the case when the natural frequency of the blade in the

horizontal plane happens to be in this zone. Let us note.that, in the

case of a blade suspended by packs of leaf springs (ref. 2), this has

much less importance for a new construction. In this case, one adapts

the distance between the axis of the two packs in such a way as to
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Figure 2.- Horizontal absorber.
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Figures 3(a) and 3(b).- Working schematic of a horizontal absorber.
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Figure 4.- Geometric symbols.






